Original Article

Diagnostic performance of dermoscopy in cutaneous tumors: A retrospective analysis

L Bintanjoyo*, BH Kusumaputra*, I Citrashanty*, AN Hidayati**, D Murtiastutik*, MY Listiawan*, M Sari*, CRS Prakoeswa*

Abstract

Background Misdiagnosis of cutaneous tumors leads to inappropriate management, morbidity or mortality. Highly sensitive and specific diagnostic tools are needed. Dermoscopy evaluates surface of tumors rapidly and noninvasively but is limited to depth of dermal papillae. Histopathology is gold standard diagnostic of cutaneous tumors, but is invasive and time-consuming. This study evaluated diagnostic performance of clinical examination and dermoscopy compared to histopathology in determining diagnosis and nature of cutaneous tumors.

Methods This retrospective study included cutaneous tumor patients examined clinically, dermoscopically and histopathologically at Dermatooncology and Dermatosurgery Division, Dermatology and Venereology Outpatient Clinic, Dr. Soetomo General Academic Hospital, Surabaya in 2019-2020. Clinical, dermoscopic and histopathological diagnosis were obtained from medical record. Clinical diagnosis was established by board-certified dermatologists. Dermoscopic diagnoses were established from revised two-step algorithm. Histopathological diagnoses were established by board-certified pathologists. Clinical, dermoscopic and histopathologic nature were determined from respective diagnoses. Concordance, sensitivity and specificity of clinical examination and dermoscopy were calculated with histopathology as gold standard examination.

Results There were 27 subjects. Ten subjects had malignant tumors including basal cell carcinoma (7 subjects), squamous cell carcinoma, Bowen's disease, and Kaposi's sarcoma (1 subject each). Seventeen subjects had benign tumors including seborrheic keratosis (4 subjects), verruca vulgaris and lymphangioma (2 subjects each), solar lentigo, melanocytic nevi, pyogenic granuloma, hemangioma, pilomatrixoma, sebaceous gland hyperplasia, steatocystoma, neurofibroma and fibroepithelial polyp (1 subject each). Clinical and histopathological diagnosis showed moderate concordance (Cohen's Kappa (κ)=0.447). Dermoscopic and histopathological diagnosis showed fair concordance (κ =0.346). Clinical examination showed sensitivity 70.0%, specificity 70.6%, and fair concordance (κ =0.390) while dermoscopy showed sensitivity 100.0%, specificity 82.4%, and substantial concordance (κ =0.776) compared with histopathology in determining malignant nature of tumors.

Conclusion Dermoscopy is a valuable tool to support clinical examination, but cannot replace clinical or histopathologic examination in determining nature and diagnosis of cutaneous tumors.

Key words

Cutaneous tumors; Dermoscopy; Histopathology; Concordance; Human and health.

Introduction

Cutaneous tumors are overgrowth of some or all components of the skin.^{1,2} They are classified into malignant or benign according to their

growth nature.² Misdiagnosis of cutaneous tumors will lead to inappropriate management and increased morbidity and mortality, such as missed curative treatment for malignant tumors, or unnecessary excision of benign tumors.

^{*} Dermatology and Venereology Department, Faculty of Medicine, Universitas Airlangga/ Dr. Soetomo General Academic Hospital, Surabaya, Jawa Timur, Indonesia.

[#] Universitas Airlangga Teaching Hospital, Surabaya, Jawa Timur, Indonesia.

Therefore, highly sensitive, specific and accurate diagnostic tools are needed.³

Cutaneous tumors can be diagnosed clinically, dermoscopically or histopathologically.^{3,4} Histopathology is still the gold standard diagnostic of cutaneous tumors.⁵ It evaluates tumors on cellular level and vertical dimension. However, it is invasive, requires protracted time and only evaluates less than 1% of tumor's volume. Thus, inaccurate sectioning may miss the focal area containing malignant cells.^{4,6}

Dermoscopy is a rapid noninvasive tool to evaluate structures and colors on horizontal surface of skin lesions. The Dermoscopy showed better sensitivity (82.6 to 100%) than clinical examination (72.5%) and good specificity (96.2%) in diagnosing malignant cutaneous tumors. Dermoscopy may bridge clinical and histopathological examination to detect malignant nature and reduce misdiagnosis of cutaneous tumors. The However, dermoscopy is not able to evaluate history, consistency, elevation, depth beyond dermal papillae and cellular level of cutaneous tumors.

Dermoscopy has been used in our institution since 2019 for examining cutaneous tumors. This study aimed to evaluate the diagnostic performance of clinical examination and dermoscopy compared to histopathology in determining diagnosis and nature of cutaneous tumors.

Methods

This study has been approved by Ethical

Address for correspondence

Prof. Dr. dr. Cita Rosita Sigit Prakoeswa, Sp.KK(K) Dermatology and Venereology Department, Faculty of Medicine, Universitas Airlangga/ Dr. Soetomo General Academic Hospital, Surabaya, Jawa Timur, Indonesia. Email: cita-rosita@fk.unair.ac.id Committee at our institution on September 2, 2021 with reference number of 0569/LOE/301.4.2/IX/2021. This retrospective evaluated records medical photographic database of new cutaneous tumor patients at Dermatooncology and Dermatosurgery Division, Dermatology and Venereology Outpatient Clinic, Dr. Soetomo General Academic Hospital, Surabaya in 2019-2020. Inclusion criteria were patients examined clinically, dermoscopically histopathologically. Exclusion criteria were incomplete data or histopathological diagnosis other than cutaneous tumors.

Clinical, dermoscopic and histopathological diagnosis were obtained from medical record. Clinical diagnosis was established by board-Dermoscopic certified dermatologists. examination was done by board-certified cross-polarized dermatologists using dermoscope (DermLite II Pro HR[®], 3Gen LLC, San Juan Capistrano, California) and findings were recorded. Dermoscopic diagnosis were established based on revised two-step algorithm Togawa. 12,13 Marghoob et al.and Histopathological diagnosis were established by board-certified pathologists. Clinical, dermoscopic and histopathologic nature of cutaneous tumors were determined from respective diagnoses and stated as either malignant (including premalignant) or benign.

Cohen's Kappa (κ) were calculated to determine the concordance of clinical or dermoscopic diagnosis with histopathological diagnosis, also the concordance of clinical or dermoscopic with histopathological nature of nature cutaneous tumors. Interpretation of κ were: no to slight $(\kappa = 0.00 - 0.20),$ fair $(\kappa = 0.21 - 0.40),$ moderate (κ =0.41-0.60), substantial (κ =0.61-0.80) and almost perfect agreement (κ =0.81-1.00). Sensitivity and specificity of clinical examination and dermoscopy in determining nature of cutaneous tumors were calculated, using histopathology as gold standard examination.

Results

There were 27 subjects which fulfilled the inclusion criteria of this study. Table 1 showed the clinical, dermoscopic and histopathologic diagnosis and nature of each subjects (in numerical order). Ten subjects had of histopathological diagnoses malignant cutaneous tumors, namely: seven subjects with basal cell carcinoma (BCC), and one subject each with squamous cell carcinoma (SCC), Bowen's disease and Kaposi's sarcoma. Seventeen subjects had histopathological diagnoses of benign cutaneous tumors, namely:

four subjects with seborrheic keratosis (SK), two subjects each with verruca vulgaris and lymphangioma, and one subject each with solar lentigo, melanocytic nevi, sebaceous gland hyperplasia, steatocystoma, pilomatrixoma, pyogenic granuloma, hemangioma, neurofibroma and fibroepithelial polyp. Clinical histopathological diagnosis showed moderate agreement (κ =0.447) with 14 subjects having discordant clinical and histopathological diagnosis. Dermoscopic and histopathological diagnosis showed fair agreement (κ=0.346) with 16 subjects having discordant dermoscopic and histopathological diagnosis.

Table 2 showed the dermoscopic findings and dermoscopic diagnosis of each subjects (in numerical order).

Table 1 Clinical, dermoscopic and histopathologic diagnosis and nature of the subjects (in numerical order).

No.	Clinical diagnosis	Dermoscopic diagnosis*	Histopathological diagnosis
	(nature)	(nature)	(nature)
1	BCC (malignant)	BCC (malignant)	BCC (malignant)
2	BCC (malignant)	BCC (malignant)	BCC (malignant)
3	BCC (malignant)	BCC (malignant)	BCC (malignant)
4	BCC (malignant)	BCC (malignant)	BCC (malignant)
5	MM (malignant)	BCC (malignant)	BCC (malignant)
6	SK (benign)	BCC (malignant)	BCC (malignant)
7	Melanocytic nevus (benign)	MM (malignant)	BCC (malignant)
8	SCC (malignant)	Keratoacanthoma (malignant)	SCC (malignant)
9	BCC (malignant)	BCC (malignant)	Bowen's disease (malignant)
10	Angiokeratoma (benign)	BCC (malignant)	Kaposi's sarcoma (malignant)
11	Epidermoid cyst (benign)	BCC (malignant)	Pilomatrixoma (benign)
12	Hemangioma (benign)	BCC (malignant)	Hemangioma (benign)
13	MM (malignant)	MM (malignant)	Solar lentigo (benign)
14	BCC (malignant)	SK (benign)	SK (benign)
15	BCC (malignant)	SK (benign)	SK (benign)
16	MM (malignant)	SK (benign)	SK (benign)
17	AK (malignant)	SK (benign)	SK (benign)
18	Epidermal nevus (benign)	SK (benign)	Verruca vulgaris (benign)
19	Verruca vulgaris (benign)	SK (benign)	Verruca vulgaris (benign)
20	Epidermal nevus (benign)	SK (benign)	Sebaceous gland hyperplasia (benign)
21	Fibroepithelial polyp (benign)	SK (benign)	Fibroepithelial polyp (benign)
22	Verruca vulgaris (benign)	Hemangioma (benign)	Lymphangioma (benign)
23	Lymphangioma (benign)	Hemangioma (benign)	Lymphangioma (benign)
24	Pyogenic granuloma (benign)	Hemangioma (benign)	Pyogenic granuloma (benign)
25	Steatocystoma (benign)	Nevus (benign)	Steatocystoma (benign)
26	Neurofibroma (benign)	Nevus (benign)	Neurofibroma (benign)
27	Melanocytic nevus (benign)	Melanocytic nevus (benign)	Melanocytic nevus (benign)

^{*}Dermoscopic diagnosis was established according to revised two-step algorithm, BCC=basal cell carcinoma, MM=malignant melanoma, SCC=squamous cell carcinoma, SK=seborrheic keratosis.

Table 2 Dermoscopic findings and dermoscopic diagnosis of the subjects (in numerical order).

No.		Dermoscopic findings		Dermoscopic	
	Step 1	Step 2	Others	Diagnosis*	
Ĺ	Lv.2 (multiple irregular blue-gray globules, ulceration)	Two axes asymmetry, blue- white veil	Linear straight vessel, crust	BCC	
2	Lv.2 (leaf-like area, multiple irregular blue-gray globules, blue-gray ovoid nest, ulceration)	One axis asymmetry, multiple irregular blue-gray dots	Crust	ВСС	
}	Lv.2 (multiple irregular blue- gray globules, arborizing vessel, ulceration)	Undefined symmetry Crust, erosion		ВСС	
ļ	Lv.2 (multiple irregular blue- gray globules, blue-gray ovoid nest, arborizing vessel, ulceration, shiny white areas)	Undefined symmetry	Shiny white strands and blotches, milky red areas, SFT, crust, erosion	ВСС	
5	Lv.2 (multiple irregular blue- gray globules, blue-gray ovoid nest)	One axis asymmetry	Brown SLA	BCC	
5	Lv.2 (leaf-like area, multiple irregular blue-gray globules, shiny white area, ulceration)	Undefined symmetry	Crust	BCC	
7	Lv.1 (streaks), Lv.2 (leaf-like area, multiple irregular bluegray globules)	Two axes asymmetry, multicomponent pattern, multiple irregular blue-gray dots, radial streaming, scar-like depigmentation	-	MM	
3	Lv.5 (peripheral hairpin vessel)	Undefined symmetry	Blood spots within amorphous keratin mass (scales)	Kerato- acanthoma	
)	Lv.2 (ulceration)	Full symmetry, PSC	Erosion	BCC	
0	Lv.2 (multiple irregular blue- gray globules, ulceration), Lv.4 (red to purple lacunae)	One axis asymmetry	White rail lines, crust, erosion	BCC	
1	Lv.2 (ulceration), Lv.6 (linear irregular vessels)	Full symmetry, linear irregular vessels	Central white, peripheral pink and blue SLAs, white scales, crust, erosion	ВСС	
2	Lv.2 (multiple irregular blue- gray globules), Lv.3 (milia- like cysts, black network-like structures), Lv.6 (milky red globules)	Undefined symmetry, multiple irregular blue-gray dots	Whitish veil, umbilicated polilobular whitish SLA, milky red areas	ВСС	
3	Lv.1 (pigment network, irregular aggregated globules), Lv.6 (dotted vessels)	Undefined symmetry, multicomponent pattern, atypical pigment network, irregular blue-gray and brown dots, irregular globules, scar- like depigmentation, irregular dotted vessels	White scales, crust	MM	
4	Lv.3 (comedo-like opening)	Full symmetry, PSC	-	SK	
.5	Lv.3 (comedo-like opening, crypts)	Full symmetry, PSC	-	SK	
6	Lv.3 (comedo-like opening, cerebriform pattern)	Full symmetry, PSC	-	SK	

Ma	Dermoscopic findings		Dermoscopic		
No.	Step 1	Step 2	Others	Diagnosis*	
17	Lv.3 (cerebriform pattern), Lv.4 (red lacunae)	Full symmetry	White rail lines, white scales	SK	
18	Lv.3 (cerebriform pattern)	Full symmetry, PSC	Thick adherent scales	SK	
19	Lv.3 (cerebriform pattern, crypts)	Full symmetry, PSC	White scales	SK	
20	Lv.3 (milia-like cysts) Lv.5 (crown vessels)	Undefined symmetry, PSC	Yellowish SLA, milky red areas, SFT	SK	
21	Lv.3 (cerebriform pattern, light brown fingerprint-like structures)	Full symmetry, PSC	White scales	SK	
22	Lv.4 (Red to pink lacunae)	Undefined symmetry, PSC	Yellow lacunae, thin purple fluid levels	Hemangioma	
23	Lv.4 (dark red lacunae)	Undefined symmetry, PSC	Whitish veil	Hemangioma	
24	Lv.4 (red lacunae)	Full symmetry, PSC	White rail lines	Hemangioma	
25	Lv.7 (featureless lesion)	Full symmetry, PSC, homogenous pattern	Yellowish SLA	Nevus	
26	Lv.7 (featureless lesion)	Full symmetry, PSC, homogenous pattern	White scar-like area, white fingerprint- like structure	Nevus	
27	Lv.1 (aggregated brown-black globules), Lv.2 (multiple regular aggregated blue-gray globules), Lv.3 (milia-like cysts, moth-eaten borders)	Full symmetry, PSC, cobblestone pattern	Multifocal perifollicular whitish SLA	Melanocytic nevus	

^{*}Dermoscopic diagnosis was established according to revised two-step algorithm, BCC = basal cell carcinoma, Lv = level, MM = malignant melanoma, PSC = presence of single color, SCC = squamous cell carcinoma, SFT = short fine telangiectasia, SK = seborrheic keratosis, SLA = structureless area

Subject with BCC (No. 7) and solar lentigo (No. 13) were misdiagnosed dermoscopically due to presence of step 1-level 1 and step 2 criteria of malignant melanoma, such as atypical pigment network, irregular aggregated globules, dots, streaks, or dotted vessels, radial streaming, scarlike depigmentation or multicomponent pattern. Four subjects, namely with BD (No. 9), Kaposi's sarcoma (No. 10), pilomatricoma (No. 11) or hemangioma (No. 12) were misdiagnosed dermoscopically due to presence of step 1-level 2 criteria of BCC (ulceration or multiple irregular blue-gray globules). Subjects with verruca vulgaris (No. 18 and 19), sebaceous gland hyperplasia (No.20), and fibroepithelial were misdiagnosed polyp (No. 21) dermoscopically due to presence of step 1-level 3 criteria of SK (cerebriform pattern or milialike cysts). Subjects with lymphangioma (No. 22 and 23) and pyogenic granuloma (No. 24) were misdiagnosed dermoscopically due to presence of step 1-level 4 criteria of hemangioma (red lacunae). Subject with SCC (No. 8) was misdiagnosed dermoscopically due to presence of step 1-level 5 criteria of keratoacanthoma (peripheral hairpin vessels). Subjects with steatocystoma (No. 25) or neurofibroma (No. 26) were misdiagnosed dermoscopically as nevus due to presence of step 1-level 7 criteria of featureless lesions and absence of step 2 criteria of malignant melanocytic lesions.

Clinical and histopathological nature of cutaneous tumors showed fair agreement (κ =0.390), while dermoscopic and histopathological nature of cutaneous tumors showed showed substantial agreement (κ =0.776).

Table 3 Concordance, sensitivity and specificity of clinical, dermoscopic and histopathological examination in determining nature of cutaneous tumors

examination in determining nature of cutalleous tullors.						
Nature of automonys turnous	Histopathological			Sn*	C *	
Nature of cutaneous tumors	Malignant (N=10)	Benign (N=17)	κ	Sh.	Sp*	
Clinical						
Malignant	7 (70.0%)	5 (29.4%)	0.390	70.0%	70.6%	
Benign	3 (30.0%)	12 (70.6%)				
Dermoscopic						
Malignant	10 (100.0%)	3 (17.6%)	0.776	100.0%	82.4%	
Benign	0(0.0%)	14 (82.4%)				

 κ = Cohen's Kappa, Sn = sensitivity, Sp = specificity, *for malignant nature

Clinical examination showed Sn 70.0% and Sp 70.6%, while dermoscopy showed Sn 100.0% and Sp 82.4% in determining malignant nature of cutaneous tumors compared with histopathology (**Table 3**).

Discussion

From 2019 to 2020, only 27 patients were examined clinically, dermoscopically and histopathologically. This low number is because histopathological examination was only done on suspected malignant lesions and clearly benign lesions were exempted from this examination. Furthermore, COVID-19 pandemic on 2020 hampered dermoscopic and histopathological examination which required close contact with patients.

In this study, concordance of dermoscopic and histopathologic diagnosis showed fair agreement (κ=0.346). Study in Egypt reported better dermoscopic concordance between histopathological diagnosis, with $\kappa = 0.859$. This difference may be due to different number of subjects, type of tumors and dermoscopic algorithm used which was not mentioned in the study. The concordance of dermoscopic and histopathologic diagnosis is also less than concordance of clinical and histopathological diagnosis showing moderate agreement (κ =0.447). This may be due to limited number of possible diagnosis in revised two-step algorithm, which only included malignant

tumors such as malignant melanoma, BCC, SCC, keratoacanthoma and BD, and benign tumors such as melanocytic nevus, SK, solar lentigines, dermatofibroma, hemangioma, angiokeratoma, sebaceous gland hyperplasia, molluscum contagiosum and clear acanthoma. 12,13 In this study, there were 10 subjects with histopathological diagnosis not included in this algorithm and were certainly misdiagnosed dermoscopically, namely Kaposi's sarcoma, verruca vulgaris, pyogenic granuloma, lymphangioma, pilomatrixoma, fibroepithelial polyp, neurofibroma and steatocystoma. However, these 10 subjects may still be diagnosed clinically.

Chen et al. reported that dermoscopic misdiagnosis commonly resulted from misclassification of nonmelanocytic lesion as malignant melanoma, such as in regressing solar lentigines. 14 Papageorgiou et al. also reported that solar lentigines were misdiagnosed as malignant melanoma due to difficulty to differentiate broad network of solar lentigines and pigment network of malignant melanoma and presence of regression structures (multiple blue-gray dots and scar like depigmentation), as also seen in this study. 15 Misdiagnosis may also caused by overlapping dermoscopic structures in several cutaneous tumors.14 Papageorgiou et al. reported that follicular adnexal tumors were commonly misdiagnosed as BCC due to presence of blue-gray dots or linear branching vessels.¹⁵ globules and

Pilomatrixoma, a follicular adnexal tumor, was also misdiagnosed as BCC in this study due to ulceration. Popadic reported that blurred lacunae may mimic blue-gray ovoid nests resulting in misdiagnosis of hemangioma as pigmented BCC, as also seen in this study. Misdiagnosis may also be due to observer or technical error, like excessive pressure which compressed vessels rendering this structures invisible. Chen *et al.* reported that prebiopsy diagnostic accuracy was not the primary goal, but was secondary goal of two-step algorithm, which may explain the fair concordance between dermoscopic and histopathologic diagnosis in this study. 4

In this study, dermoscopy showed Sn 100,0%, Sp 82.4% and substantial agreement (κ =0,776) in determining malignant nature of cutaneous tumors. Study in Iran reported lower Sn (85.42%) and Sp (70.59%) in determining malignant nature of tumors, but study in Egypt reported higher Sn (100%), Sp (96.2%), and κ (0.859) than this study. 11,17 However, both studies did not state the algorithm used. Presence of false positive diagnosis in this study highlighted another limitation of revised twostep algorithm in which this algorithm does not consider all dermoscopic features to establish algorithm diagnosis. This can dermoscopic diagnosis based on presence of only one among several criteria in the first step. If a tumor showed dermoscopic features of several different level of the first step, the algorithm will select diagnosis based on the earlier level, which commonly resulted in diagnosis of malignant tumor. However, this study showed that dermoscopy successfully avoided false negative diagnosis in which malignant tumors are classified dermoscopically as benign. These false negative diagnosis is relatively more important than false positive diagnosis.14

This study also showed that concordance between dermoscopic and histopathologic nature cutaneous tumors were better concordance between dermoscopic and histopathological diagnosis. This is in accordance with primary goal of revised twostep algorithm, which is to determine malignant or benign nature of cutaneous tumors to decide whether to do biopsy. 14 This study also showed that dermoscopy had better diagnostic value and concordance than clinical examination in determining malignant nature of tumors. Therefore, dermoscopy is a valuable supporting tool for clinical examination in determining the nature of cutaneous tumors.

Our study has several limitations including its retrospective nature, relatively small number of subjects, and absence of malignant melanoma which is an important tumor in the development of dermoscopy algorithm. Other studies in Indonesia also reported absence of melanoma among skin cancer patients which may be due to rarity of melanoma in darker skin type. Another limitation in this study is the use of only cross-polarized dermoscope which renders some dermoscopic structures less visible such as milia-like cysts or blue-white veil and partial dermoscopic examination in subjects with large lesions. Other limitation in subjects with large lesions.

Conclusion

In conclusion, dermoscopy is a valuable tool to support clinical examination in determining malignant nature of cutaneous tumors. Dermoscopy is also a fairly useful tool in establishing diagnosis of cutaneous tumors. However, dermoscopy cannot replace clinical examination because of its inability to evaluate history, consistency and elevation of lesions or histopathology as gold standard diagnostic because of its inability to evaluate tumors in cellular level and depth beyond dermal papillae.

Future prospective studies with both polarized and nonpolarized dermoscope, larger sample size or focusing on a specific type of cutaneous tumor are recommended.

References

- Gunawan D, Wijaya L V, Oroh EEC. Tumor Kulit Ganas di Poliklinik Kulit dan Kelamin RSUP Prof. DR. R.D. Kandou Manado. MDVI. 2011;38(2):63–9.
- Gefilem GA, Suling PL, Kapantouw MG. Profil Tumor Jinak Kulit Di Poliklinik Kulit Dan Kelamin RSUP Prof. Dr. R. D Kandou Manado Periode 2009-2011. e-Clinic. 2013;1(1):1–10.
- Dinnes J, Deeks JJ, Chuchu N, et al. Visual inspection and dermoscopy, alone or in combination, for diagnosing keratinocyte skin cancers in adults. Cochrane Database Syst Rev. 2018;2018(12):CD011901.
- Yélamos O, Braun RP, Liopyris K, et al. Usefulness of dermoscopy to improve the clinical and histopathologic diagnosis of skin cancers. J Am Acad Dermatol. 2019;80(2):365–77.
- Purnamasari I, Sari M. The Role of Dermoscopy in Diagnosis of Benign Skin Neoplasms. Folia Medica Indones. 2022;58(1):61–7.
- Ahmad Z, Ervianti E. Dermoscopic Examination in Malassezia folliculitis. Berk Ilmu Kesehat Kulit dan Kelamin - Period Dermatology Venereol. 2022;34(2):130–6.
- 7. Rosendahl C, Tschandl P, Cameron A, et al. Diagnostic accuracy of dermatoscopy for melanocytic and nonmelanocytic pigmented lesions. J Am Acad Dermatol. 2011;64(6):1068–73.
- 8. Ervianti E, Astari L, Widia Y, *et al.* Trichoscopy of tinea capitis infection in children by Microsporum sp.: A case aeries. *J Pak Assoc Dermatol.* 2021;**31**(4):735–9.
- 9. Zulkarnain I, Kurniati D, Listiawan MY, *et al.* Accuracy of polarized non-contact dermoscopy and skin scraping in suspected scabies infestation. *Eur J Pediatr Dermatol*. 2018;**28(4)**:198–204.
- 10. Yélamos O, Braun RP, Liopyris K, *et al.* Dermoscopy and dermatopathology

- correlates of cutaneous neoplasms. *J Am Acad Dermatol*. 2019;**80(2)**:341–63.
- 11. Ibrahim H, El-Taieb M, Ahmed A, *et al.* Dermoscopy versus skin biopsy in diagnosis of suspicious skin lesions. *Al-Azhar Assiut Med J.* 2017;**15(4)**:203–9.
- 12. Togawa Y. Review of vasculature visualized on dermoscopy. *J Dermatol*. 2017;**44(5)**:525–32.
- 13. Marghoob AA, Braun R. Proposal for a revised 2-step algorithm for the classification of lesions of the skin using dermoscopy. *Arch Dermatol*. 2010;**146(4)**:426–8.
- 14. Chen LL, Dusza SW, Jaimes N, *et al.* Performance of the first step of the 2-step dermoscopy algorithm. *JAMA Dermatol.* 2015;151(7):715–21.
- 15. Papageorgiou V, Apalla Z, Sotiriou E, et al. The limitations of dermoscopy: false positive and false negative tumors. J Eur Acad Dermatology Venereol. 2018;32(6):879–88.
- 16. Popadic M. Dermoscopic diagnosis of a rare, congenital vascular tumor: Verrucous hemangioma. *J Dermatol.* 2012; **39(12)**:1049–50.
- 17. Naderi Z, Radmanesh M. Assessment of sensitivity and specificity of dermoscopy in diagnosis of malignant and premalignant skin lesions. *J Crit Rev.* 2020;**7(19)**:9072–8.
- Wilvestra S, Lestari S, Asri E. Studi Retrospektif Kanker Kulit di Poliklinik Ilmu Kesehatan Kulit dan Kelamin RS Dr. M. Djamil Padang Periode Tahun 2015-2017. *J Kesehat Andalas*. 2018;7(Supplement 3):47–9.
- 19. Setiabudi J, Wardhana M, Indira IGAAE, *et al.* Profil Pra Kanker dan Kanker Kulit RSUP Sanglah Periode 2015 2018. *J Med Udayana*. 2021;**10(3)**:83–8.
- Sari F, Lestari S, Asri E, et al. The Clinicohistopathological of Skin Tumors in Dr. M. Djamil Hospital and Pathology Anatomy Departement, Medical Faculty of Andalas University Padang during 2014-2017. In: Proceedings of the 23rd Regional Conference of Dermatology (RCD 2018). 2018. p. 249–52.