The role of epigenetics in immunosuppression in patients with infectious diseases as a fascinating applied observation


  • Inas K. Sharquie Associate Prof. Dr. Inas K. Sharquie PhD. Department of Microbiology & Immunology, College of Medicine, University of Baghdad, Baghdad, Iraq.
  • Khalifa E. Sharquie Prof Dr. Khalifa E. Sharquie, MD, PhD, FRCP Edin. Department of Dermatology, College of Medicine, University of Baghdad, Baghdad, Iraq.


Epigenetics, tuberculosis, dermatophytes,, viral infections, immunosuppression, therapeutic resistance


The objective of the present study is to review infectious diseases during outbreaks and epidemics and to investigate how disease progression is affected and modified via the mechanism of epigenetics. The associated chronic refractory courses and the poor response to therapeutic interventions will also be considered. Specifically, two diseases will be reviewed and discussed in relation to epigenetics, namely tuberculosis, dermatophytosis, and viral infections, since many countries are currently running and experiencing epidemic states and outbreaks relating to these diseases.  


Kanyal A, Nahata S, Karmodiya K. Chapter 7 - Epigenetics in infectious disease. In: Sharma S, editor. Prognostic Epigenetics: Academic Press; 2019. p. 171-201.

Valeria M, Daniela DA, Francesca M, Nicola P, Luigi A. Epigenetics and Infectious Disease: State-of-the-Art and Perspectives in New Generation Therapies. OBM Genetics. 2018;2(4):1-

Fatima S, Kumari A, Agarwal M, Pahuja I, Yadav V, Dwivedi VP, et al. Epigenetic code during mycobacterial infections: therapeutic implications for tuberculosis. FEBS J. 2022;289(14):4172-91.

Atlante S, Mongelli A, Barbi V, Martelli F, Farsetti A, Gaetano C. The epigenetic implication in coronavirus infection and therapy. Clinical Epigenetics. 2020;12(1):156.

Bellanti JA. Epigenetic studies and pediatric research. Pediatr Res. 2020;87(2):378-84

Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123(19):2145-56

Barros SP, Offenbacher S. Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res. 2009;88(5):400-8

Moosavi A, Motevalizadeh Ardekani A. Role of Epigenetics in Biology and Human Diseases. Iran Biomed J. 2016;20(5):246-58

Gujral P, Mahajan V, Lissaman AC, Ponnampalam AP. Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod Biol Endocrinol. 2020;18(1):020-00637

Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity. 2010;105(1):4-13

Kim DH, Villeneuve LM, Morris KV, Rossi JJ. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol. 2006;13(9):793-7

Hawkins PG, Santoso S, Adams C, Anest V, Morris KV. Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cells. Nucleic Acids Res. 2009;37(9):2984-95

Quaresma JAS. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin Microbiol Rev. 2019;32(4):00034-18

Richmond JM, Harris JE. Immunology and skin in health and disease. Cold Spring Harb Perspect Med. 2014;4(12)

Nguyen AV, Soulika AM. The Dynamics of the Skin's Immune System. Int J Mol Sci. 2019;20(8)

Lei V, Petty AJ, Atwater AR, Wolfe SA, MacLeod AS. Skin Viral Infections: Host Antiviral Innate Immunity and Viral Immune Evasion. Front Immunol. 2020;11(593901)

Coates M, Blanchard S, MacLeod AS. Innate antimicrobial immunity in the skin: A protective barrier against bacteria, viruses, and fungi. PLoS Pathog. 2018;14(12)

18. Piipponen M, Li D, Landén NX. The Immune Functions of Keratinocytes in Skin Wound Healing. Int J Mol Sci. 2020;21(22)

Wang J-N, Li M. The Immune Function of Keratinocytes in Anti-Pathogen Infection in the Skin. International Journal of Dermatology and Venereology. 2020;3(4):231-8.

Clayton K, Vallejo AF, Davies J, Sirvent S, Polak ME. Langerhans Cells-Programmed by the Epidermis. Front Immunol. 2017;8(1676)

West HC, Bennett CL. Redefining the Role of Langerhans Cells As Immune Regulators within the Skin. Front Immunol. 2018;8(1941)

Ho AW, Kupper TS. T cells and the skin: from protective immunity to inflammatory skin disorders. Nat Rev Immunol. 2019;19(8):490-502

Conceição-Silva F, Morgado FN, Pinheiro RO, Tacchini-Cottier F. Editorial: The Skin Immune Response to Infectious Agents. Front Immunol. 2022;12(810059)

Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O, et al. Physiology of mycobacteria. Adv Microb Physiol. 2009;55:81-182

Ganbat D, Seehase S, Richter E, Vollmer E, Reiling N, Fellenberg K, et al. Mycobacteria infect different cell types in the human lung and cause species dependent cellular changes in infected cells. BMC Pulm Med. 2016;16(19):016-0185

Elkington P, Tebruegge M, Mansour S. Tuberculosis: An Infection-Initiated Autoimmune Disease? Trends Immunol. 2016;37(12):815-8

Cole J, Morris P, Dickman MJ, Dockrell DH. The therapeutic potential of epigenetic manipulation during infectious diseases. Pharmacol Ther. 2016;167:85-99

Heemskerk D, Caws M, Marais B. Pathogenesis. In: Tuberculosis in Adults and Children. Chapter 3, Clinical Manifestations. Available from: https://wwwncbinlmnihgov/books/NBK344406/. 2015

Sáenz B, Hernandez-Pando R, Fragoso G, Bottasso O, Cárdenas G. The dual face of central nervous system tuberculosis: A new Janus Bifrons? Tuberculosis. 2013;93(2):130-5.

Bittencourt TL, da Silva Prata RB, de Andrade Silva BJ, de Mattos Barbosa MG, Dalcolmo MP, Pinheiro RO. Autophagy as a Target for Drug Development Of Skin Infection Caused by Mycobacteria. Front Immunol. 2021;12(674241)

Charifa A, Mangat R, Oakley AM. Cutaneous Tuberculosis. [Updated 2021 Aug 30]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from:

Brito AC, Oliveira CMM, Unger DA, Bittencourt MJS. Cutaneous tuberculosis: epidemiological, clinical, diagnostic and therapeutic update. An Bras Dermatol. 2022;97(2):129-44

Khadka P, Koirala S, Thapaliya J. Cutaneous Tuberculosis: Clinicopathologic Arrays and Diagnostic Challenges. Dermatol Res Pract. 2018;9(7201973)

Sacchidanand S, Sharavana S, Mallikarjun M, Nataraja HV. Giant lupus vulgaris: A rare presentation: Indian Dermatol Online J. 2012 Jan;3(1):34-6. doi: 10.4103/2229-5178.93498.

Mello RBd, Vale ECSd, Baeta IGR. Scrofuloderma: a diagnostic challenge*. Anais Brasileiros de Dermatologia. 2019;94:102 - 4

Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, et al. Biology of Zika Virus Infection in Human Skin Cells. J Virol. 2015;89(17):8880-96

Blázquez AB, Escribano-Romero E, Merino-Ramos T, Saiz JC, Martín-Acebes MA. Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy. Front Microbiol. 2014;5(266)

Marazzi I, Garcia-Sastre A. Interference of viral effector proteins with chromatin, transcription, and the epigenome. Curr Opin Microbiol. 2015;26:123-9

Schäfer A, Baric RS. Epigenetic Landscape during Coronavirus Infection. Pathogens. 2017;6(1)

Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418-23

Abdullah SF, Sharquie IK. SARS-CoV-2: A Piece of Bad News. Medeni Med J. 2020;35(2):151-60

McLeod DV, Wild G, Úbeda F. Epigenetic memories and the evolution of infectious diseases. Nature Communications. 2021;12(1):4273.

Ozturkler Z, Kalkan R. A New Perspective of COVID-19 Infection: An Epigenetics Point of View. Glob Med Genet. 2021;9(1):4-6

Chlamydas S, Papavassiliou AG, Piperi C. Epigenetic mechanisms regulating COVID-19 infection. Epigenetics. 2021;16(3):263-70

Sharquie KE, Sharquie IK. The frequency of autoimmune diseases among patients with COVID-19 infection. Journal of Pakistan Association of Dermatologists. 2022;32(3):532-8

Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martínez-Colón GJ, McKechnie JL, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. 2020;26(7):1070-6

Lee JS, Park S, Jeong HW, Ahn JY, Choi SJ, Lee H, et al. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci Immunol. 2020;5(49):eabd1554

Corley MJ, Pang AP, Dody K, Mudd PA, Patterson BK, Seethamraju H, et al. Genome‐wide DNA methylation profiling of peripheral blood reveals an epigenetic signature associated with severe COVID‐19. Journal of Leukocyte Biology. 2021;110:21 - 6

Aly R. Microbial Infections of Skin and Nails. In: Medical Microbiology. 4th ed. 1996. .

Burstein VL, Beccacece I, Guasconi L, Mena CJ, Cervi L, Chiapello LS. Skin Immunity to Dermatophytes: From Experimental Infection Models to Human Disease. Front Immunol. 2020;11(605644)

Sharquie KE, Jabbar RI. Major Outbreak of Dermatophyte Infections Leading Into Imitation of Different Skin Diseases: Trichophyton Mentagrophytes is the Main Criminal Fungus. Journal of the Turkish Academy of Dermatology. 2021;15(4):91-101

Hainer BL. Dermatophyte infections. Am Fam Physician. 2003;67(1):101-8

Tainwala R, Sharma Y. Pathogenesis of dermatophytoses. Indian J Dermatol. 2011;56(3):259-61

Yee G, Al Aboud AM. Tinea Corporis. In: Statspearls [internet]. 2022. .

Shende R, Wong SSW, Rapole S, Beau R, Ibrahim-Granet O, Monod M, et al. Aspergillus fumigatus conidial metalloprotease Mep1p cleaves host complement proteins. The Journal of Biological Chemistry. 2018;293:15538 - 55

Ho J, Wickramasinghe DN, Nikou S-A, Hube B, Richardson JP, Naglik JR. Candidalysin Is a Potent Trigger of Alarmin and Antimicrobial Peptide Release in Epithelial Cells. Cells. 2020;9.




How to Cite

Sharquie IK, Sharquie KE. The role of epigenetics in immunosuppression in patients with infectious diseases as a fascinating applied observation. J Pak Assoc Dermatol [Internet]. 2023Mar.5 [cited 2024Jul.13];33(1):275-82. Available from:



Review Articles

Most read articles by the same author(s)